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A new control law for stabilizing the periodic motion of uncertain systems, with particular
application to helicopter rotor blades, is presented. The control law uses proportional
displacement and velocity feedback with a time delay equal to the period of the motion being
stabilized. No knowledge of the dynamics of the system being controlled or the desired
trajectory is required. The control law is tested on a two-degree-of-freedom mathematical
model that approximates the motion of a helicopter rotor blade in both hover and forward
#ight. Analysis of the developed perturbations equation shows that a signi"cant
improvement in the stability of the motion of the rotor blade is achieved by the appropriate
choice of the control parameters. The control law greatly a!ected the transient states
without altering the steady state motion of the uncontrolled system. This feature is
particularly important for helicopters because the steady state motion of the rotor blades
determines the #ight path. The experimental investigation con"rms the existence of optimal
values of the parameters of the control law, which result in a signi"cant improvement of the
stability of the periodic motion of the installation. The experimentally obtained relationship
between the optimal control parameters and the period of the motion con"rms the results of
the analytical investigation of the in#uence of the control law on the stability margin of
uncertain systems. ( 2000 Academic Press
1. INTRODUCTION

Many machines and devices are designed to perform periodic motion. From an engineering
point of view, the stability of this periodic motion is essential since its lack leads to poor
performance, damage, or even destruction.

If the parameters of a system and its motion are known it is reasonably easy to improve
the stability margin of the system. Unfortunately, in the case of helicopter rotor blade
problems, the parameters of the system as well as the parameters of its motion are uncertain.
Researchers agree that because of their extreme complexity the problems of helicopter rotor
aerodynamics and structural dynamics are not understood su$ciently to allow the
prediction of rotor exciting forces with any degree of con"dence [1}4]. In such a case, an
0022-460X/00/290591#20 $35.00/0 ( 2000 Academic Press
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active control law, which can improve the stability of the periodic motion, cannot depend
explicitly upon the system parameters. However, as Loewy [1] pointed out, &&whatever the
aerodynamics are, they are periodic''. To stabilize periodic motion in cases where the
parameters are uncertain, the following time-delay control law was developed [5, 6]:

Dy"a(x (t)!x(t!q))#b(xR (t)!xR (t!q)) (1)

where a and b are parameters, x(t) and xR (t) are the current displacement and velocity of the
uncertain system, x (t!q) and xR (t!q) are the displacement and velocity which the system
had one period earlier and Dy is the control input.

By testing the control law (1) on a mathematical model of a one-degree-of-freedom (d.o.f.)
non-linear object, Krodkiewski and Faragher [5] concluded that if the time delay q is equal
to the period of the steady state motion of the uncontrolled object, the region of asymptotic
stability of its periodic motion is greatly enlarged and the vibration during the transient
states is greatly attenuated.

A major feature of the control law (1) is that it does not change the periodic steady state
trajectory of the uncontrolled object but greatly in#uences the transient states of the system.
Pyragas [7] developed a similar time-delay control law for stabilizing unstable periodic
trajectories in chaotic systems. The most signi"cant di!erence between the two control laws is
that the second term in the control law (1) is not present in the control law developed by
Pyragas [7]. The second term introduced in equation (1) plays a very signi"cant role in
improving the stability of the steady state motion of the system.

Research studies on active control of the motion of helicopter rotor blades can be divided
into two categories. Authors of works which fall into the "rst category, called higher
harmonic control (HHC), assume that the feedback signals come from sensors attached to
the helicopter fuselage and that the control inputs are imposed on the conventional
swashplate (labelled 1 in Figure 1) by means of actuators (labelled 3 in Figure 1) in the
non-rotating system [8, 9].

This gives only three independent control inputs because the swashplate has only three
d.o.f. In the other approach, called individual blade control (IBC), sensors are attached to
the rotor blades and the control inputs are applied to actuators (labelled 2 in Figure 1)
which replace the pitch links that control the rotor blade angle of attack in the rotating
system [10, 11]. Recently, other methods for controlling individual rotor blades, such as
piezoelectric actuators on the blade [12] or an actively controlled #ap [13], have also been
investigated. In these methods, the number of the control inputs is equal to the number of
blades. The control law (1) can be used with both of the above methods of implementation.
To assess the e!ectiveness of the control law, it was applied to a mathematical model of
a helicopter rotor blade.

This paper presents the results of the stability analysis of the steady-state #ap and pitch
motion of the helicopter rotor blade. The case of hovering #ight and the case of forward
#ight are both considered, in that order. Also, the results of an experimental investigation of
the in#uence of the control law (1) on the stability margin of the periodic motion of
a laboratory installation are shown.

2. MATHEMATICAL MODEL OF THE UNCONTROLLED SYSTEM

To test the control law (1), the following mathematical model of the uncontrolled system
developed by Stammers [14] was adopted. The mathematical model was based on the
physical model shown in Figure 2.



Figure 1. Rotor control linkages.
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The #ap and pitch angles are denoted by b and h respectively. The angular speed of the
rotor shaft is denoted by X. The pitch natural frequency is denoted by l

1
X. Therefore l

1
may be considered as the non-dimensional pitch natural frequency. t"Xt stands for the
non-dimensional time, which is the angle of rotation of the rotor shaft about the Z-axis and
is called the &&azimuth angle''. The distance of the centre of gravity behind the aerodynamic
centre of the rotor blade expressed as a fraction of the chord dimension c

h
is called the

&&centre of gravity o!set'' and it is denoted by p (see Figure 3).
A dot over a variable indicates di!erentiation with respect to non-dimensional time t.

The tip-speed ratio k is the ratio of the velocity of the helicopter relative to the surrounding
air, to the velocity of the tip of the rotor blade relative to the helicopter (XR

s
) (see Figure 2).

Since the rotor speed X of a helicopter varies only slightly, the tip-speed ratio k is indicative
of the forward speed of the helicopter. In hovering #ight k"0. The maximum forward #ight



Figure 2. The two-degree-of-freedom physical model of the rotor blade.

Figure 3. The centre of gravity o!set.
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speed of helicopters is generally limited to k"0)5, therefore for the numerical analysis
presented in this paper a value of k"0)3 was used. The displacement of the lower end of the
#exible pitch link is denoted by y,

y"y
0
#Dy. (5)

The displacement y
0

is dictated by the pilot and determines the steady state motion of the
uncontrolled system. The displacement Dy is the active control input.

The values of the parameters used in the mathematical model were chosen to represent
realistic values for a Sikorsky Black Hawk helicopter. The two parameters p and l

1
in the

matrices (4) that a!ect the pitch-#ap stability were chosen as the design parameters.
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For a motionless swashplate the displacement y
0

is a periodic function of time,

y
0
(t)"y

0
(t#2n) (6)

and the above mathematical model (2) has a periodic solution

h
0
(t)"h

0
(t#2n), b

0
(t)"b

0
(t#2n). (7)

To improve the stability of the periodic motion (7) and control law (1) was adopted. The
equations of motion for the helicopter rotor blade with active control are described in the
following section.

3. CONTROL LAW

The schematic diagram of the controlled system is shown in Figure 4.
The control input Dy is

Dy"0)0001a(b (t)!b (t!q))#0)0001b(bQ (t)!bQ (t!q)), (8)

where a and b are adjustable control parameters, b (t) is the #ap angle and b (t!q) is the
#ap angle recorded one period earlier. A factor of 0)0001 was introduced solely for
convenience. The time delay in the feedback loop was set equal to the period of one
revolution of the helicopter rotor q"2n. Introduction of equations (5) and (8) into equation
(2) yields the equation of motion of the controlled system

M(t) ) xK#C(t) ) x5 #K(t) ) x"[3776l2
1
y
0
(t), 0]T

#A(x (t)!x (t!q))#B (x5 (t)!x5 (t!q)), (9)
Figure 4. Schematic diagram of the control law applied to the helicopter rotor blade.
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where

A"C
0 0)3776l2

1
a

0 0 D, B"C
0 0)3776l2

1
b

0 0 D . (10)

In general, a particular solution x (t) of equation (9) for t*0 is uniquely determined by
the initial function x (t) which de"nes, for example, the position of the system for the time
!q)t)0.

The periodic particular solution of the controlled system (9) is identical to the periodic
particular solution of the uncontrolled system (7).

4. PERTURBATION EQUATION FOR THE PERIODIC SOLUTION OF THE
CONTROLLED SYSTEM

4.1. PERTURBATION EQUATION FOR HOVERING FLIGHT WITH ACTIVE CONTROL

For the case of hovering #ight (k"0), the equation of motion for the rotor blade with
active control, according to equations (9) and (4), is

M )xK#C ) x5 #K ) x"[3776l2
1
y
0
, 0]T#A(x (t)!x (t!q))#B (x5 (t)!x5 (t!q)), (11)

where the matrices M, K C and y
0

are time independent.
The particular solution of equation (11), which represents the steady state pitch and #ap

angles of the rotor blade in hovering #ight, can be predicted as a vector of constant
magnitudes x

0
which according to equation (11) has the following form:

x
0
"K~1 y

0
. (12)

Introduction of the perturbed motion

x (t)"x
0
#Dx(t) (13)

into the equation of motion (11), gives the perturbation equation

M )DxK#C )Dx5 #K )Dx"A(Dx(t)!Dx(t!q))#B (Dx5 (t)!Dx5 (t!(q)). (14)

4.2. PERTURBATION EQUATION FOR FORWARD FLIGHT WITH ACTIVE CONTROL

The equation of motion for the rotor blade in forward #ight (k'0) with active control is
given by equation (9). In this case, the input from the pilot to the rotor y (t) is periodic with
period q"2n. The time delay used in the control terms is also equal to the period q"2n.
Therefore, the steady state solution for the system with control is periodic with period q, and
is identical to the steady state solution for the system without control,

x
0
(t)"x

0
(t#q). (15)
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Introduction of the perturbed motion

x (t)"x
0
(t)#Dx(t) (16)

into the equation of motion (9) gives the perturbation equation about the steady state
motion of the rotor blade in forward #ight

M(t) )DxK#C (t) )Dx5 #K(t) )Dx"A(Dx(t)!Dx(t!q))#B (Dx5 (t)!Dx5 (t!q)). (17)

5. STABILITY ANALYSIS FOR HOVERING FLIGHT

5.1. STATE-SPACE FORMULATION AND THE CHARACTERISTIC EQUATION

The perturbation equation (14) can be written in terms of the state-space co-ordinates as
follows:

DZ0 "E )DZ#N )DB, (18)

where

E"C
0

!M~1K

I

!M~1CD , N"C
0

0

0

0)377v2
1
M~1D, DZ"[Dh, Db, DhQ , DbQ ]T,

DB"[0, 0, a (Db(t)!Db(t!q))#b (DbQ (t)!DbQ (t!q)), 0]T. (19)

The solution of equation (18) can be assumed to have the following form:

DZ"DZ
0

ejt . (20)

Substitution of equation (20) into equation (18) results in a set of homogeneous algebraic
equations that are linear with respect to the vector of constant magnitudes DZ

0
. Therefore,

the function (20) is the particular solution of equation (18) for the magnitudes j which are
roots of its characteristic equation:

D"det[E#N )W!j1]"0, W"C
0 0 0 0
0 0 0 0
0 a (1!e!2nj) 0 b (1!e!2nj)
0 0 0 0 D . (21)

However, in contrast with the characteristic equation of the perturbation equation for the
rotor blade without control, which has four characteristic roots, this characteristic equation
(21) is transcendental and therefore has an in"nite number of characteristic roots (see
reference [5]). This is a consequence of the presence of the time-delay terms in the control
law. To "nd the characteristic roots, the real and imaginary parts of the characteristic
equation (21) were separated to produce two equations. The loci of zero points of the real
and imaginary parts of the characteristic equation were plotted in the complex plane;}R.
The characteristic roots are identi"ed as the points in the complex plane where the loci
intersect. The root of the characteristic equation, which has the largest real part, is called the
&&dominant'' characteristic root. An example of a plot of the loci of zero points of the real and
imaginary parts of the characteristic equation (21) is shown in Figure 5.



Figure 5. Roots of the characteristic equation for p"0)08, l12"10)8 and a"6)75 and b"0)6 s.**, locus of
zero points of the real part of the characteristic equation; - - - - locus of zero points of the imaginary part of the
characteristic equation, d roots of the characteristic equation.
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5.2. OPTIMAL VALUES OF THE CONTROL PARAMETERS

The optimal values of the control parameters a and b for speci"ed values of the pitch
natural frequency l

1
and centre of gravity o!set p, are the values that result in the lowest

value of the real part of the dominant characteristic root R
dom

. These values produce the
largest increase in the stability margin of the steady state motion of the rotor blade. The
global search for the optimal values of the control parameters was performed by a specially
developed computer program. The minimum of the real part of the dominant root was
considered as the goal function. For each point (a, b) of the search domain a!b, the
computer program sought the dominant root as described in section 5.1. An example of
results of the search is presented in Figure 6 for the design parameters p"0)08 and
l2
1
"10)8.

5.3. RESULTS OF NUMERICAL COMPUTATION

The optimal values of the control parameters, and the corresponding lowest values of
R

dom
, have been found for a range of values of the pitch natural frequency l

1
and the centre

of gravity o!set p. Figure 7 shows the increase in the region of asymptotical stability in the
domain p!l2

1
results from the application of the control law.

A solid line shows the stability boundary for the controlled system and a broken line
shows the stability boundary for the uncontrolled system. In the region labelled &&unstable''
the value of R

dom
is positive; in the region labelled &&stable'' the value of R

dom
is negative. In

a signi"cant part of the region (between the solid and broken lines in Figure 7) where the
steady state motion is unstable without control, the control law is able to stabilize it.

In Figure 7, point P indicates the design parameters for which the contour plot of the real
part of the dominant root is provided in Figure 6. It can be seen from Figure 6 that the
uncontrolled system (a"0 and b"0) for the design parameters speci"ed by the point P is



Figure 6. R
dom

as function of a and b: p"0)08, l2
1
"10)8; *denotes optimal value of a and b.

Figure 7. Stability boundaries in hovering #ight with and without control; - - - , stability boundary without
control; **, stability boundary with control.
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unstable (R
dom

"0)108 s~1). For the optimal parameters (a"6)75 and b"0)6 s) the real
part of the dominant root is negative (R

dom
"!0)097 s~1). It was observed that for the

optimal parameters a and b two equally dominant roots of the same real part always exist.
This peculiarity for the design parameters corresponding to the point P can be seen from
Figure 5.

The developed method of searching for the optimal values of the control parameters
a and b has been veri"ed by numerical integration of the perturbation equation (14) using
the Runge}Kutta method. The initial functions adopted for this integration were
Dh(t)"0)0, Db(t)"0)1, for !2n)t)0. The results are shown in Figure 8.



Figure 8. Perturbations of the uncontrolled and controlled system respectively; - - - , Dh (rad);***, Db (rad).
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As expected, the amplitude of the perturbations for the uncontrolled system increases
with time because the steady state motion is unstable, and the amplitude of the
perturbations for the controlled system with the optimal values of the control parameters
decreases with time because of steady state motion has been stabilized. Figure 8(b) shows
clearly that for the optimal values of a and b, the oscillation of the rotor blade about the
steady state motion is the superposition of frequencies corresponding to the imaginary parts
of the two equally dominant roots shown in Figure 5.

6. STABILITY ANALYSIS FOR FORWARD FLIGHT

For the case of forward #ight (k'0), the perturbation equation (17) has periodic
coe$cients and time-delay terms. Since for an equation of this type a method to search for
the dominant characteristic root is not yet developed, equation (17) was numerically
integrated to investigate the stability of the periodic steady state motion of the rotor blade
in forward #ight.

The initial functions for the numerical integration of the perturbation equation (17) for all
the cases studied were Dh(t)"0)0, Db(t)"0)1 for !2n)t)0. The value of the square
of non-dimensional pitch natural frequency was l2

1
"14)4. The "gures described below

illustrate a sample of the numerical analysis.

6.1. INFLUENCE OF FORWARD FLIGHT ON ROTOR BLADE STABILITY

The results in Figure 9 were calculated for the rotor blade without control (a"b"0)
and for a centre of gravity o!set of p"0)064. Figure 9(a) shows that for the case of hovering
#ight (k"0) the amplitude of the perturbations increases with time, indicating that the
steady state motion of the rotor blade is unstable; whereas Figure 9(b) shows that for the
case of forward #ight (k"0)3) the amplitude of the perturbations decreases with time,
indicating that the periodic steady state motion of the rotor blade is stable. These two
"gures show that forward #ight has a stabilizing e!ect on the motion of the rotor blade.
Stammers [14] also found that the pitch-#ap #utter stability margin of a helicopter rotor
blade was greater in forward #ight than in hovering #ight.

6.2. INFLUENCE OF THE CENTRE OF GRAVITY OFFSET ON ROTOR BLADE STABILITY

Figure 10(a) shows the results for the rotor blade without control (a"b"0) for the same
forward #ight condition (k"0)3) as the results in Figure 9(b), except that the value of the



Figure 9. Perturbations about the steady-state motion of the rotor blade: (a) for the helicopter in hovering
#ight: k"0)0, p"0)064, a"b"0; (b) for the helicopter in forward #ight: k"0)3, p"0)064, a"b"0.**, Db,
- - - , Dh.

Figure 10. Perturbations about the steady state motion of the rotor blade: (a) for the helicopter in forward #ight
without control: k"0)3, p"0)069, a"b"0; (b) for the helicopter in forward #ight with control, k"0)3,
p"0)069, a"7)0, b"!5)0 s. **, Db, - - - , Dh.
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centre of gravity o!set has been increased from p"0)064 to 0)069, which represents moving
the centre of gravity slightly towards the trailing edge of the rotor blade. Figure 10(a) shows
that this increase in the value of p causes the periodic steady state motion of the rotor blade
to become unstable and the perturbations to grow with time. Therefore, for l2

1
"14)4 the

stability boundary lies between p"0)064 and 0)069.

6.3. INFLUENCE OF THE CONTROL LAW ON ROTOR BLADE STABILITY

The results in Figure 10(b) have been calculated for the same forward #ight condition
(k"0)3) as those in Figure 10(a). However, the control law has been introduced to the
mathematical model of the system by setting a"7)0 and b"!5)0 s. These values of the
control parameters were found by the largest gradient method of optimization. The
equations of perturbations (17) were numerically integrated for the assumed control
parameters a and b and the same initial functions Dh(t)"0)0, Db(t)"0)1, for
!2n*t)0. The goal function was de"ned as a minimum of the time necessary for the
system response along co-ordinates Dh(t) and Db(t) to be smaller than 0)1. Figure 10(b)
shows that the application of the control law with these values of the control parameters
causes the periodic steady state motion of the rotor blade that was unstable without control
to become stable. This demonstrates the e!ectiveness of the control law in stabilizing the
periodic motion of the rotor blade in forward #ight.



Figure 11. Schematic diagram of the laboratory installation; 1*#exible beam, 2, 3, 4 * electro}magnetic
exciters, 5, 6 * eddy current displacement transducers.
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7. EXPERIMENTAL INVESTIGATION

7.1. DESCRIPTION OF THE LABORATORY INSTALLATION

The aims of the experimental investigation were to test the e!ectiveness of the control law
on a real mechanical system, and to determine whether the optimal values of the control
parameters can be found experimentally with no knowledge of the dynamic properties of
the system. As would be the case for a real helicopter, the laboratory installation in this
experimental investigation is treated as a &&black box''whose steady state motion is periodic.
The controller must be able to sense this period and adjust the time delay in the control law
to be equal to this period.

The mechanical part of the laboratory installation consists of a steel bar 1, rigidly
supported at each end, with three electromechanical exciters 2, 3, 4 attached to it. The "rst
two natural frequencies of the system were 24 and 59 Hz.

The middle exciter 3 provided a steady sinusoidal excitation to the steel bar to induce the
periodic motion of the installation. It was driven by a function generator via a power
ampli,er as shown in Figure 11.

The exciter 2 provided a force that was proportional to the velocity of the steel bar. The
displacement of the steel bar at the location of the left-hand exciter 2 was sensed by
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a displacement transducer and then electronically di!erentiated by the damping simulator to
produce a signal proportional to the velocity. This was used to apply a negative damping
force in order to make the motion of the system unstable.

The exciter 4 in Figure 11 provided the control force. The time delay in the feedback path
was synchronized with the period of the excitation force applied to the system by the middle
exciter. This was achieved by using a phase-locked oscillator. The input to the oscillator was
the same sine wave from the function generator that was used to drive the power ampli"er
for the exciter 3. The oscillator produced a square wave with a frequency 64 times that of the
sine wave. The square wave from the oscillator was used to trigger the analogue/digital
(A/D) converter on the I/O board connected to the PC. For each trigger, the position of the
system was recorded in a circular bu+er with the help of the right-hand displacement
transducer 6. Using the data stored in this circular bu!er an interrupt service routine
performed the following operations: numerical di!erentiation of the displacement to obtain
the velocity; reading from memory the displacement and velocity recorded 64 samples
earlier; calculation of the control signal according to the control law (1); and sending the
control signal to the D/A converter for conversion to an analogue signal to drive the exciter
4 via the power ampli,er.

Between triggers the PC had to complete the interrupt service routine. The oscillator
constructed for these experiment was accurate up to a maximum excitation frequency of
50 Hz. With that input frequency, the frequency of the output square wave from the
oscillator was 3200 Hz. With the A/D converter being triggered at a frequency of 3200 Hz,
the PC was easily able to complete the interrupt service routine before the next trigger came.
By comparison, the Sikorsky Black Hawk helicopter rotor rotates at 258 rpm, which is only
4.3 Hz. Thus, in terms of computer processing power, it would be easy to implement the
control law on a helicopter.

7.2. PROCEDURE FOR THE EXPERIMENTAL DETERMINATION OF THE STABILITY MARGIN

In order to determine the improvement of the stability margin of the periodic motion of
the laboratory installation due to the control law (1), the following procedure was used.

For the selected excitation frequency f
ex

and the control parameters a and b, the gain of
the power ampli"er of the exciter 3 was adjusted to produce periodic response of the system
of amplitude 0)075 mm as measured by the transducer 5. Then the amount of negative
damping c added to the controlled object was increased up to the magnitude that caused
instability. The maximal amount of negative damping which could be added to the
controlled system before the periodic motion became unstable c

max
was used to measure the

increase in stability margin achieved by applying the control law (1). The amount of
negative damping which could be added to the uncontrolled object (a"b"0) before the
periodic motion became unstable c

ref
was used as a reference. The percentage increase in

c
max

relative to c
ref

was computed according to

Dc"100](c
max

!c
ref

)/c
ref

. (22)

The records of the motion of the laboratory installation comprise time-series plots and
frequency spectrum plots (see Figure 12).

Each of the time-series plots shows two traces. The upper trace is the displacement of the
bar d in mm as measured by the right-hand displacement transducer 6. The lower trace
shows the control signal Dy in < measured at the output of the D/A converter, which was
produced by the real-time control program running on the PC.



Figure 12. Examples of periodic motion of the laboratory installation; f
ex
"16 Hz, a"!0)1, b"!0)2 s:

(a) stable; (b) unstable.

Figure 13. An example of the unstable periodic motion of the laboratory installation: f
ex
"16 Hz, a"0,

b"0 s.
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The marks c#, c!, d# and d! correspond to those instants of time when: the control
signal was applied to the system, the control signal was removed, the negative damping was
applied to the object and the negative damping was removed. The periodic motion of the
system is described as having become unstable either: when the amplitude of the control
signal grew until it was &&saturated'', that is, until it reaches the limits of the D/A converter
which was $10 V; or when the amplitude of the oscillations of the steel bar grew beyond
the admissible range $0)5 mm.

The time-series plot in Figure 12(a) began at t"0 s with no control and no negative
damping added to the system. At t"0)2 s (c#) the control was added to the system. A large
transient oscillation in the control signal can be seen at this point, but it quickly died away
and the control signal settled down to a very small amplitude. This transient occurred because
all the values in the memory locations of the &&circular bu!er'' were set to zero when the
real-time control program was started. At t"1.0 s (d#) the negative damping was added to
the system. A small transient in the control signal occurred at this point but it quickly settled



Figure 14. An example of the periodic motion of the laboratory installation being at the boundary of stability;
f
ex
"16 Hz, a"0)35, b"!0)15 s.
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back to a small amplitude. The frequency spectrum plot corresponding to t"2)0 s shows that
the only signi"cant component of the oscillation is at the excitation frequency of 16 Hz. Such
a recorded periodic motion was considered stable. In this case, the amount of negative
damping added to the system was increased to a magnitude c

1
less than the value of c

max
.

The time-series plot in Figure 12(b) presents the case when the amount of negative
damping added to the system was increased to a magnitude c

2
greater than the value of c

max
.

At t"0 s the control had been added to the system. The negative damping was added at
t"0)3 s and the control signal grew to saturation. Motion of the system was no longer
periodic at 16 Hz but had an additional signi"cant component at 60 Hz. Such a periodic
motion of the laboratory installation was considered unstable. Therefore, the maximum
negative damping is c

1
(c

max
(c

2
.

Figure 13 presents the case when the amount of negative damping that was added to the
system without control (a"b"0) made the periodic motion unstable. The negative
damping was added at t"1)2 s and had to be removed at t"3)7 s because the oscillation
became too violent. The corresponding frequency spectrum plot shows the perturbations at
a frequency of 59 Hz which grew very large. Such a periodic motion of the laboratory
installation was considered unstable.

Figure 14 presents the case when the response of the control system is not periodic but both
the control signal and the response of the system are well within the admissible ranges. The
frequency spectrum plot shows the presence of small disturbances of frequency 59 Hz. In such
cases, the periodic motion of the system is considered to be on the boundary of stability and
the corresponding magnitude of the negative damping was considered to be maximal.

7.3. EXPERIMENTAL DETERMINATION OF THE OPTIMAL VALUES OF THE CONTROL

PARAMETERS

In the experiments, the frequency of the sinusoidal excitation f
ex

provided by the function
generator was varied over a wide range. At each excitation frequency, the values of the



Figure 15. (a) Margin of stability Dc as a function of the control parameters a and b. (b) Frequencies of
perturbations f

u
as a function of the control parameters; f

ex
"16 Hz.

Figure 16. The time-series and spectrum plot for case 1.
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control parameters a and b in the control law (1) were varied in a trial-and-error fashion in
order to "nd the most e!ective values for stabilizing the periodic motion of the system. The
values of a and b which gave the highest value of Dc were considered to be the optimal ones.
The contour plot of Dc as a function of a and b for the excitation frequency of 16 Hz is
shown in Figure 15(a). Figure 15(b) shows frequencies of perturbations f

u
over the same

region of the control parameters a and b.
To illustrate the signi"cant features of the contour plots of Dc and f

u
shown in Figure 15,

let us consider three cases of the recorded motion marked by dots in Figure 15. All cases
have the same value of a"0)35. The optimal value of Dc"200% was found to occur in this
region and is marked by an asterisk in Figure 15.

For a"0)35, there are two distinct frequency regions in the contour plot of f
u

as
a function of a and b in Figure 15 (b). For b"!0)15 s, the frequency of the perturbations
was 60 Hz; and for b"!0)11 s the frequency of the perturbations was 21 Hz. The point
where the optimal values of a and b occur (a"0)35, b"!0)14 s) lies on the border
between the 21 and 60 Hz regions.



Figure 17. The time-series and spectrum plot for case 2.
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Case 1: a"0)35, b"!0)15 s: This case shows that for the values of the control
parameters a"0)35, b"!0)15 s the frequency of the perturbations f

u
was 60 Hz. The

value of Dc for this case was signi"cantly less than the maximum value. This can be seen
from the closely spaced contour lines in this region in Figure 15(a).

The time-series plot in Figure 16 illustrates a situation where the periodic motion is at the
boundary of stability. In this situation the controller was not able to suppress the
perturbations completely, and the amplitude of the control signal in the steady state was
signi"cantly greater than zero. When the negative damping was added, a large transient
oscillation occurred in the control signal. Over the next 0)8 s the amplitude of the control
signal decreased, but it then remained constant at 8 V peak to peak, which was 40% of its
saturated value. The displacement trace shown in Figure 16 is clearly not pure 16 Hz
oscillation. From the corresponding spectrum plot, it is easy to see that the perturbations
have frequency equal to 60 Hz.

Case 2: a"0)35, b"!0)11 s: The time-series plot in Figure 17 shows that the control
became almost saturated when negative damping was added to the controlled system at
t"1)0 s. However, very marked di!erence can be seen between the frequency of the
oscillation of the control signal in this plot and that in Figure 16. The perturbations, as it
can be seen from the spectrum plot, have a frequency of 21 Hz. In this case, a small change
in the value of b from !0)15 to !0)11 s caused the value of f

u
to change from 60 to 21 Hz.

Case 3: a"0)35, b"!0)14 s: The values of the control parameters used in this case
were the optimal values where the greatest value of Dc was found to occur for f

ex
"16 Hz.

This can be seen in Figure 15(a) where the point a"0)35, b"!0)14 s lies in the
Dc"150}200% region of the contour plot.

The time-series plot in Figure 18 shows that the periodic motion became unstable after
the negative damping was increased to a value greater than c

max
. For 1 s after this increase,

the high-frequency component of the control signal grew slowly. Over the next 0)5 s the
amplitude of the control signal grew more rapidly unit it became saturated. At this point,
t"1)8 s, the amplitude of the displacement had not increased signi"cantly but a higher
frequency component can be seen to be present. The frequency spectrum plot corresponding
to the displacement at t"1)8 s reveals two signi"cant components of frequency at about 21



Figure 18. The time-series and spectrum plot for case 3: a"0)35, b"!0.14 s.
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and 59 Hz in addition to the 16 Hz component. This con"rms the results shown for
a"0)35, b"!0)14 s in Figure 15(b) where the optimal values of a and b lie on the
borderline between two signi"cantly di!erent values of f

u
.

This phenomenon was also detected by means of the numerical investigations described
earlier. The optimal values of the control parameters a and b occur where two roots have
the same value of the real part and are thus equally dominant. The imaginary parts of these
two roots are not the same, and so they correspond to di!erent frequencies of perturbations
about the periodic steady state motion. Adjusting the control parameters away from this
optimal point will cause one of the roots to move to the right in the complex plane and the
other to move to the left. Which of the two roots moves to the right and which moves to the
left depends on how the values of the control parameters are changed.

7.4. MARGIN OF STABILITY AS A FUNCTION OF EXCITATION FREQUENCY

To evaluate the e!ectiveness of the control law (1), the highest achievable value of Dc was
determined for a wide range of excitation frequencies of the periodic motion. The optimal
values of Dc and the corresponding optimal values of a and b are plotted as a function of the
period of the harmonic excitation force (¹

ex
) in Figure 19.

This plot shows that the e!ectiveness of the control law depends on the period of the
harmonic excitation ¹

ex
. For the controlled system with the optimal values of the control

parameters, the margin of stability *c is greater than zero for all periods of excitation ¹
ex

.
For the range of values of ¹

ex
used in the experimental results shown in Figure 19, the

values of ¹
ex

for which the control law (1) was least e!ective was the period corresponding
to the second natural frequency of the uncontrolled system (¹

2
"0)017 s) and integer

multiples of this period. As can be seen from Figure 11, the exciter 2, simulating the negative
damping, was installed in the middle between nodes of the second mode. Therefore, the
instability of the second mode was promoted in the laboratory installation. The results
presented in Figure 19 show a similar pattern to those found numerically for the
mathematical model of a one-d.o.f. system considered in references [6, 7]. It was found that



Figure 19. (a) Optimal magnitudes of the control parameter a. (b) Optimal magnitudes of the control parameter
b. (c) Margin of stability Dc.
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the periods of the harmonic excitation for which the control law (1) was least e!ective were
the period corresponding to the natural frequency of the system and integer multiples of
that period.

8. CONCLUSIONS

A new control law for stabilizing the periodic motion of uncertain systems has been tested
using a two-d.o.f. mathematical model of a helicopter rotor blade, including the
aerodynamic forces. A method has been developed to search the complex plane for the
dominant characteristic root of the perturbation equation and to "nd the optimal values of
the control parameters.

The controlled system with the optimal values of the control parameters was found to
have two equally dominant characteristic roots. The corresponding oscillation is
a combination of two distinct frequencies.

The developed control law stabilizes the periodic steady state motion of the uncontrolled
system without changing it. The control law improves the stability of the steady state
motion of a helicopter rotor blade in both hovering #ight and forward #ight. It has been
shown that in both cases a signi"cant improvement of the stability margin can be achieved
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by applying the control law with the optimal values of the control parameters. The control law
signi"cantly increases the region of asymptotic stability of the rotor blade in the domain p!v2

1
.

If the mathematical model is not available, the optimal values of the control parameters
would have to be determined experimentally. The experiments using a simple laboratory
installation have demonstrated that the optimal values of the control parameters can be
determined in this way.

It has been demonstrated that the optimal values of the control parameters can be found
experimentally with no knowledge of the dynamics of the system or the equations of
motion. The e!ectiveness of the control law has been determined experimentally as
a function of the period of the motion being stabilized. The values of ¹

ex
for which the

control law (1) is least e!ective are the periods corresponding to natural frequencies of the
uncontrolled system and integer multiples of these periods.

The second term introduced in equation (1) plays a very signi"cant role in improving the
stability of the steady state motion of the system. Figures 6 and 15(a) illustrate this fact. It
can be seen that the optimal performance is not achieved when the control parameter b is
equal to zero. By adjusting it to the optimal value one can signi"cantly improve the stability
margin of the periodic motion of the system considered.
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